
Blind Justice: Fairness with Encrypted Sensitive Attributes

Niki Kilbertus 1 2 Adrià Gascón 3 4 Matt Kusner 3 4 Michael Veale 5 Krishna P. Gummadi 6 Adrian Weller 2 3

Abstract
Recent work has explored how to train machine
learning models which do not discriminate against
any subgroup of the population as determined
by sensitive attributes such as gender or race.
To avoid disparate treatment, sensitive attributes
should not be considered. On the other hand, in or-
der to avoid disparate impact, sensitive attributes
must be examined—e.g., in order to learn a fair
model, or to check if a given model is fair. We
introduce methods from secure multi-party com-
putation which allow us to avoid both. By encrypt-
ing sensitive attributes, we show how an outcome-
based fair model may be learned, checked, or have
its outputs verified and held to account, without
users revealing their sensitive attributes.

1. Introduction
Concerns are rising that machine learning systems which
make or support important decisions affecting individuals—
such as car insurance pricing, résumé filtering or recidivism
prediction—might illegally or unfairly discriminate against
certain subgroups of the population (Schreurs et al., 2008;
Calders & Žliobaitė, 2012; Barocas & Selbst, 2016). The
growing field of fair learning seeks to formalize relevant
requirements, and through altering parts of the algorithmic
decision-making pipeline, to detect and mitigate potential
discrimination (Friedler et al., 2016).

Most legally-problematic discrimination centers on differ-
ences based on sensitive attributes, such as gender or race
(Barocas & Selbst, 2016). The first type, disparate treatment
(or direct discrimination), occurs if individuals are treated
differently according to their sensitive attributes (with all
others equal). To avoid disparate treatment, one should
not inquire about individuals’ sensitive attributes. While

1Max Planck Institute for Intelligent Systems 2University
of Cambridge 3The Alan Turing Institute 4University of
Warwick 5University College London 6Max Planck Institute
for Software Systems. Correspondence to: Niki Kilbertus
<niki.kilbertus@tuebingen.mpg.de>.

Proceedings of the 35 th International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

this has some intuitive appeal and justification (Grgić-Hlača
et al., 2018), a significant concern is that sensitive attributes
may often be accurately predicted (“reconstructed”) from
non-sensitive features (Dwork et al., 2012). This motivates
measures to deal with the second type of discrimination.

Disparate impact (or indirect discrimination) occurs when
the outcomes of decisions disproportionately benefit or
hurt individuals from subgroups with particular sensitive
attribute settings without appropriate justification. For ex-
ample, firms deploying car insurance telematics devices
(Handel et al., 2014) build up high dimensional pictures
of driving behavior which might easily proxy for sensitive
attributes even when they are omitted. Much recent work in
fair learning has focused on approaches to avoiding various
notions of disparate impact (Feldman et al., 2015; Hardt
et al., 2016; Zafar et al., 2017c).

In order to check and enforce such requirements, the mod-
eler must have access to the sensitive attributes for individu-
als in the training data—however, this may be undesirable
for several reasons (Žliobaitė & Custers, 2016). First, indi-
viduals are unlikely to want to entrust sensitive attributes
to modelers in all application domains. Where applications
have clear discriminatory potential, it is understandable that
individuals may be wary of providing sensitive attributes
to modelers who might exploit them to negative effect, es-
pecially with no guarantee that a fair model will indeed be
learned and deployed. Even if certain modelers themselves
were trusted, the wide provision of sensitive data creates
heightened privacy risks in the event of a data breach.

Further, legal barriers may limit collection and processing of
sensitive personal data. A timely example is the EU’s Gen-
eral Data Protection Regulation (GDPR), which contains
heightened prerequisites for the collection and processing
of some sensitive attributes. Unlike other data, modelers
cannot justify using sensitive characteristics in fair learning
with their “legitimate interests”—and instead will often need
explicit, freely given consent (Veale & Edwards, 2018).

One way to address these concerns was recently proposed by
Veale & Binns (2017). The idea is to involve a highly trusted
third party, and may work well in some cases. However,
there are significant potential difficulties: individuals must
disclose their sensitive attributes to the third party (even if
an individual trusts the party, she may have concerns that

Blind Justice: Fairness with Encrypted Sensitive Attributes

the data may somehow be obtained or hacked by others,
e.g., Graham, 2017); and the modeler must disclose their
model to the third party, which may be incompatible with
their intellectual property or other business concerns.

Contribution. We propose an approach to detect and mit-
igate disparate impact without disclosing readable access to
sensitive attributes. This reflects the notion that decisions
should be blind to an individual’s status—depicted in court-
rooms by a blindfolded Lady Justice holding balanced scales
(Bennett Capers, 2012). We assume the existence of a regu-
lator with fairness aims (such as a data protection authority
or anti-discrimination agency). With recent methods from
secure multi-party computation (MPC), we enable auditable
fair learning while ensuring that both individuals’ sensitive
attributes and the modeler’s model remain private to all
other parties—including the regulator. Desirable fairness
and accountability applications we enable include:

1. Fairness certification. Given a model and a dataset of
individuals, check that the model satisfies a given fairness
constraint (we consider several notions from the literature,
see Section 2.2); if yes, generate a certificate.

2. Fair model training. Given a dataset of individuals,
learn a model guaranteed and certified to be fair.

3. Decision verification. A malicious modeler might go
through fair model training, but then use a different model
in practice. To address such accountability concerns
(Kroll et al., 2016), we efficiently provide for an indi-
vidual to challenge a received outcome, verifying that it
matches the outcome from the previously certified model.

We rely on recent theoretical developments in MPC (see
Section 3) which we extend to admit linear constraints in
order to enforce fairness requirements. These extensions
may be of independent interest. We demonstrate the real-
world efficacy of our methods, and shall make our code
publicly available.

2. Fairness and Privacy Requirements
Here we formalize our setup and requirements.

2.1. Assumptions and Incentives

We assume three categories of participants: a modeler M,
a regulator REG, and users U1, . . . ,Un. For each user, we
consider a vector of sensitive features (or attributes, we
use the terms interchangeably) zi ∈ Z (e.g., ethnicity or
gender) which might be a source of discrimination, and a
vector of non-sensitive features xi ∈ X (discrete or real).
Additionally, each user has a non-sensitive feature yi ∈ Y
which the modeler M would like to predict—the label (e.g.,
loan default). In line with current work in fair learning, we

assume that all zi and yi attributes are binary, though our
MPC approach could be extended to multi-label settings.
The source of societal concern is that sensitive attributes zi
are potentially correlated with xi or yi.

Modeler M wishes to train a model fθ : X → Y , which
accurately maps features xi to labels yi, in a supervised
fashion. We assume M needs to keep the model private for
intellectual property or other business reasons. The model
fθ does not use sensitive information zi as input to prevent
disparate treatment (direct discrimination).

For each user Ui, M observes or is provided xi, yi. The
sensitive information in zi is required to ensure fθ meets a
given disparate impact fairness condition F (see Section 2.2).
While each user Ui wants fθ to meet F, they also wish to
keep zi private from all other parties. The regulator REG
aims to ensure that M deploys only models that meet fair-
ness condition F. It has no incentive to collude with M (if
collusion were a concern, more sophisticated cryptographic
protocols would be required). Further, the modeler M might
be legally obliged to demonstrate to the regulator REG that
their model meets fairness condition F before it can be pub-
licly deployed. As part of this, REG also has a positive duty
to enable the training of fair models.

In Section 2.3, we define and address three fundamental
problems in our setup: certification, training, and verifica-
tion. For each problem, we present its functional goal and its
privacy requirements. We refer to D = {(xi, yi)}ni=1 and
Z = {zi}ni=1 as the non-sensitive and sensitive data, respec-
tively. In Section 2.2, we first provide necessary background
on various notions of fairness that have been explored in the
fair learning literature.

2.2. Fairness Criteria

In large part, works that formalize fairness in machine learn-
ing do so by balancing a certain condition between groups
of people with different sensitive attributes, z versus z′.
Several possible conditions have been proposed. Popular
choices include (where y ∈ {0, 1} and ŷ is the prediction of
a machine learning model):

P (ŷ = y | z) = P (ŷ = y | z′) (acc) (1)
P (ŷ = y | z, y = 1) = P (ŷ = y | z′, y = 1) (TPR) (2)
P (ŷ = y | z, y = 0) = P (ŷ = y | z′, y = 0) (TNR) (3)
P (ŷ = y | z, ŷ = 1) = P (ŷ = y | z′, ŷ = 1) (PPV) (4)
P (ŷ = y | z, ŷ = 0) = P (ŷ = y | z′, ŷ = 0) (NPV) (5)

P (ŷ = 1 | z) = P (ŷ = 1 | z′) (AR) (6)

Respectively, these consider equality of: (1) accuracy, (2)
true positive rate, (3) true negative rate, (4) positive pre-
dicted value, (5) negative predicted value, or (6) acceptance
rate. Works which use these or related notions include
(Hardt et al., 2016; Zafar et al., 2017c;a;b).

Blind Justice: Fairness with Encrypted Sensitive Attributes

In this work we focus on a variant of eq. (6), formulated as
a constrained optimization problem by Zafar et al. (2017c)
mimicking the p%-rule (Biddle, 2006): for any binary pro-
tected attribute z ∈ {0, 1}, it aims to achieve

min

{
P (ŷ = 1 | z = 1)

P (ŷ = 1 | z = 0)
,
P (ŷ = 1 | z = 0)

P (ŷ = 1 | z = 1)

}
≥ p

100
. (7)

We believe that in future work, a similar MPC approach
could also be used for conditions (1), (2) or (3)—i.e., all
the other measures which, to our knowledge, have been
addressed with efficient standard (non-private) methods.

2.3. Certification, Training, and Verification

Fairness certification. Given a notion of fairness F, the
modeler M would like to work with the regulator REG to
obtain a certificate that model fθ is fair. To do so, we
propose that users send their non-sensitive data D to REG;
and send encrypted versions of their sensitive data Z to both
M and REG. Neither M nor REG can read the sensitive data.
However, we can design a secure protocol between M and
REG (described in Section 3) to certify if the model is fair.
This setup is shown in Figure 1 (Left).

While both REG and M learn the outcome of the certifi-
cation, we require the following privacy constraints: (C1)
privacy of sensitive user data: no one other than Ui ever
learns zi in the clear, (C2) model secrecy: only M learns fθ
in the clear, and (C3) minimal disclosure of D to REG: only
REG learns D in the clear.

Fair model training. How can a modeler M learn a fair
model without access to users’ sensitive data Z? We propose
to solve this by having users send their non-sensitive data
D to M and to distribute encryptions of their sensitive data
to M and REG as in certification. We shall describe a secure
MPC protocol between M and REG to train a fair model fθ
privately. This setup is shown in Figure 1 (Center).

Privacy constraints: (C1) privacy of sensitive user data, (C2)
model secrecy, and (C3) minimal disclosure of D to M.

Decision verification. Assume that a malicious M has
had model fθ successfully certified by REG as above. It
then swaps fθ for another potentially unfair model fθ′ in
the real world. When a user receives a decision ŷ, e.g., her
mortgage is denied, she can then challenge that decision by
asking REG for a verification V . The verification involves
M and REG, and consists of verifying that fθ′(x) = fθ(x),
where x is the user’s non-sensitive data. This ensures that
the user would have been subject to the same result with
the certified model fθ, even if fθ′ 6= fθ and fθ′ is not fair.
Hence, while there is no simple technical way to prevent
a malicious M from deploying an unfair model, it will get

caught if a user challenges a decision that would differ
under fθ. This setup is shown in Figure 1 (Right).

Privacy constraint: While REG and the user learn the out-
come of the verification, we require (C1) privacy of sensitive
user data, and (C2) model secrecy.

2.4. Design Choices

We use a regulator for several reasons. Given fair learning
is of most benefit to vulnerable individuals, we do not wish
to deter adoption with high individual burdens. While MPC
could be carried out without the involvement of a regulator,
using all users as parties, this comes at a significantly greater
computational cost. With current methods, taking that ap-
proach would be unrealistic given the size of the user-base
in many domains of concern, and would furthermore require
all users to be online simultaneously. Introducing a regula-
tor removes these barriers and leaves users’ computational
burden at a minimum level, with envisaged applications
practical with only their web browsers.

In cases where users are uncomfortable sharing D with
either REG or M, it is trivial to extend all three tasks such
that all of xi, yi, zi remain private throughout, with the
computation cost increasing only by a factor of 2. This
extension would sometimes be desirable as it restricts the
view of M to the final model, prohibiting inferences about Z
when D is known. However, this setup hinders exploratory
data analysis by the modeler which might promote robust
model-building, and, in the case of verification, validation
by the regulator that user-provided data is correct.

3. Our Solution
Our proposed solution to these three problems is to use
Multi-Party Computation (MPC). Before we describe how
it can be applied to fair learning, we first present the basic
principles of MPC, as well as its limitations particularly in
the context of machine learning applications.

3.1. MPC for Machine Learning

Multi-Party Computation protocols allow two parties P1

andP2 holding secret values x1 and x2 to evaluate an agreed-
upon function f , via y = f(x1, x2) in a way in which
the parties (either both or one of them) learn only y. For
example, if f(x1, x2) = I(x1 < x2), then the parties would
learn which of their values is bigger, but nothing else.1 This
corresponds to the well-known Yao’s millionaires problem:
two millionaires want to conclude who is richer without
disclosing their wealth to each other. The problem was
introduced by Andrew Yao in 1982, and kicked off the area
of multi-party computation in cryptography.

1The function I is 1 if its argument is true and 0 otherwise.

Blind Justice: Fairness with Encrypted Sensitive Attributes

Reg

Fairness Certification

modeler

user

regulator

Reg

sensitive data

M

UiU1 Un

Fair Model Training

data
(non-sensitive) key

Decision Verification

✓

(zi)

xi, yi

Check if ✓ satisfies fairness constraint F:

Reg

MPC

If so, make signature of model s(✓)

C = I[F(✓,xi, yi, zi) 0, 8i]

C

xi, yi(zi)

s(✓)

modeler regulator

Reg

sensitive data

M

UiU1 Un

data
(non-sensitive) key

✓

(zi)

xi, yi

MPC

xi, yi(zi)

min
✓

nX

i=1

`✓(xi, yi) s.t. F(✓,xi, yi, zi) 0

Train ✓ that satisfies fairness constraint F:

M✓

modeler regulator

RegM

UiU1 Un

✓

MPC
s(✓)

data & decision

xi, ?(xi)

Determine if decision ?(xi) comes from ✓:

xi, ?(xi)

1. Check ✓ with s(✓)

2. V = I[?(xi) = ✓(xi)]

V

user user

unencrypted sharing: encrypted data:encrypted sharing:actor: unencrypted data: encrypted operations:

Figure 1. Our setup for Fairness certification (Left), Fair model training (Center), and Decision verification (Right).

In our setting—instead of a simple comparison as in the
millionaires problem—f will be either (i) a procedure to
check the fairness of a model and certify it, (ii) a machine
learning training procedure with fairness constraints, or (iii)
a model evaluation to verify a decision. The two parties
involved in our computation are the modeler M and the
regulator REG. The inputs depend on the case (see Figure 1).

As generic solutions do not yet scale to real-world data anal-
ysis tasks, one typically has to tailor custom protocols to
the desired functionality. This approach has been followed
successfully for a variety of machine learning tasks such
as logistic and linear regression (Nikolaenko et al., 2013b;
Gascón et al., 2017; Mohassel & Zhang, 2017), neural net-
work training (Mohassel & Zhang, 2017) and evaluation
(Juvekar et al., 2018; Liu et al., 2017), matrix factoriza-
tion (Nikolaenko et al., 2013a), and principal component
analysis (Al-Rubaie et al., 2017). In the next section we
review challenges beyond scalability issues that arise when
implementing machine learning algorithms in MPC.

3.2. Challenges in Multi-Party Machine Learning

MPC protocols can be classified into two groups depend-
ing on whether the target function is represented as either
a Boolean or arithmetic circuit. All protocols proceed by
having the parties jointly evaluate the circuit, processing it
gate by gate while keeping intermediate values hidden from
both parties by means of a secret sharing scheme. While rep-
resenting functions as circuits can be done without losing
expressiveness, it means certain operations are impracti-
cal. In particular, algorithms that execute different branches
depending on the input data will explode in size when im-
plemented as circuits, and in some cases lose their run time
guarantees (e.g., consider binary search).

Crucially, this applies to floating-point arithmetic. While

this is work in progress, state-of-the-art MPC floating-point
arithmetic implementations take more than 15 milliseconds
to multiply two 64 bit numbers (Demmler et al., 2015a,
Table 4), which is prohibitive for our applications. Hence,
machine learning MPC protocols are limited to fixed-point
arithmetic. Overcoming this limitation is a key challenge
for the field. Another necessity for the feasibility of MPC
is to approximate non-linear functions such as the sigmoid,
ideally by (piecewise) linear functions.

3.3. Our MPC Protocols

Input sharing. To implement the functionality from Fig-
ure 1, we first need a secure procedure for the users to
secret share a sensitive value, for example her race, with the
modeler M and the regulator REG. We use additive secret
sharing. A value z is represented in a finite domain Zq—we
use q = 264. To share z, the user samples a value r from Zq

uniformly at random, and sends z − r to M and r to REG.
While z can be reconstructed (and subsequently operated
on) inside the MPC computation by means of a simple addi-
tion, each share on its own does not reveal anything z (other
than that it is in Zq). One can think of arithmetic sharing as
a “distributed one-time pad”.

In Figure 1, we now reinterpret the key held by REG and
the encrypted z by M, as their corresponding shares of
the sensitive attributes and denote them by 〈z〉1 and 〈z〉2
respectively. The idea of privately outsourcing computation
to two non-colluding parties in this way is recurrent in MPC,
and often referred to as the two-server model (Mohassel &
Zhang, 2017; Gascón et al., 2017; Nikolaenko et al., 2013b;
Al-Rubaie et al., 2017).

Signing and checking a model. Note that certification
and verification partly correspond to sub-procedures of the
fair training task: during training we check the fairness

Blind Justice: Fairness with Encrypted Sensitive Attributes

constraint F, and repeatedly evaluate partial models on the
training dataset (using gradient descent). Hence, certifica-
tion and verification do not add technical difficulties over
training, which is described in detail in Section 4. However,
for verification, we still need to “sign” the model, i.e., REG
should obtain a signature s(θ) as a result of model certifi-
cation, see Figure 1 (Left). This signature is used to check
in the verification phase, whether a given model θ′ from M
satisfies s(θ′) = s(θ) for a certified fair model θ (in which
case θ = θ′ with high probability). Moreover, we need to
preserve the secrecy of the model, i.e., REG should not be
able to recover θ from s(θ). These properties, given that
the space of models is large, calls for a cryptographic hash
function, such as SHA-256.

Additionally, in our functionality, the hash of θ should
be computed inside MPC, to hide θ from REG. Fortu-
nately, cryptographic hashes such as SHA-256 are a com-
mon benchmark functionality in MPC, and their execution
is highly optimized. More concretely, the overhead of com-
puting s(θ), which needs to be done both for certification
and verification is of the order of fractions of a second
(Keller et al., 2013, Figure 14). While cryptographic hash
functions have various applications in MPC, we believe the
application to machine learning model certification is novel.

Hence, certification is implemented in MPC as a check that
θ satisfies the criterion F, followed by the computation of
s(θ). On the other hand, for verification, the MPC protocol
first computes the signature of the model provided by M,
and then proceeds with a prediction as long as the computed
signature matches the one obtained by REG in the verifi-
cation phase. An alternative solution is possible based on
symmetric encryption under a shared key, as highly efficient
MPC implementations of block ciphers such as AES are
available (Keller et al., 2017).

Fair training. To realize the fair training functionality
from the previous section, we follow closely the techniques
recently introduced by Mohassel & Zhang (2017). Specif-
ically, we extend their custom MPC protocol for logistic
regression to additionally handle linear constraints. This ex-
tension may be of independent interest, and has applications
for privacy-preserving machine learning beyond fairness.
The concrete technical difficulties in achieving this goal,
and how to overcome them, are presented in the next sec-
tion. The formal privacy guarantees of our fair training
protocol are stated in the following proposition.

Proposition 1. For non-colluding M and REG, our protocol
implements the fair model training functionality satisfying
constraints (C1)-(C3) in Section 2.3 in the presence of a
semi-honest adversary.

The proof holds in the random oracle model, as a standard
simulation argument combining several MPC primitives

(Mohassel & Zhang, 2017; Gascón et al., 2017). It lever-
ages security of arithmetic sharing, garbled circuits, and
oblivious transfer protocols in the semi-honest model (Gol-
dreich et al., 1987). A general introduction to MPC, as well
as a description of the relevant techniques from (Mohas-
sel & Zhang, 2017) used in our protocol, can be found in
Section A in the appendix.

4. Technical Challenges of Fair Training
We now present our tailored approaches for learning and
evaluating fair models with encrypted sensitive attributes.
We do this via the following contributions:

• We argue that current optimization techniques for fair
learning algorithms are unstable for fixed-point data,
which is required by our MPC techniques.
• We describe optimization schemes that are well-suited

for learning over fixed-point number representations.
• We combine tricks to approximate non-linear functions

with specialized operations to make fixed-point arithmetic
feasible and avoid over- and under-flows.

The optimization problem at hand is to learn a classifier θ
subject to a (often convex) fairness constraint F(θ):

min
θ

n∑

i=1

`θ(xi, yi) subject to F(θ) ≤ 0 , (8)

where `θ is a loss term (the logistic loss in this work).
We collect user data from U1, . . . ,Un into matrices X ∈
Rn×d,Z ∈ {0, 1}n×p and a label vector y ∈ {0, 1}n.

Zafar et al. (2017c) use a convex approximation of the p%-
rule, see eq. (7), for linear classifiers to derive the constraint:

F(θ) =
1

n
|Ẑ>Xθ| − c , (9)

where Ẑ is the matrix of all ẑi := zi − z̄ and c ∈ Rd

is a constant vector corresponding to the tightness of the
fairness constraint. Here, z̄ is the mean of all inputs zi. With
A := 1/nẐ>X, the p% constraint reads F(θ) = |Aθ| − c,
where the absolute value is taken element-wise.

4.1. Current Techniques

To solve the optimization problem in eq. (8), with the fair-
ness function F in eq. (9), Zafar et al. (2017c) use Sequen-
tial Least Squares Programming (SLSQP). This technique
works by reformulating eq. (8) as a sequence of Quadratic
Programs (QPs). After solving each QP, their algorithm uses
the Han-Powell method, a quasi-Newton method that itera-
tively approximates the Hessian H of the objective function
via the update

Ht+1 = Ht +
l∆l>∆
θ>∆l∆

− Htθ∆θ>∆Ht

θ>∆Htθ∆

,

Blind Justice: Fairness with Encrypted Sensitive Attributes

where l∆ = l(θt+1,λt+1) − l(θt,λt) and l(θt,λt) =∑n
i=1 `θt

(xi, yi) + λ>F(θt) is the Lagrangian of eq. (8).
Finally, θ∆ = θt+1 − θt.

There are two issues with this approach from an MPC per-
spective. First, solving a sequence of QPs is prohibitively
time-consuming in MPC. Second, while the above Han-
Powell update performs well on floating-point data, the
two divisions by non-constant, non-integer numbers easily
underflow or overflow with fixed-point numbers.

4.2. Fixed-Point-Friendly Optimization Techniques

Instead, to solve the optimization problem in eq. (8), we
perform stochastic gradient descent and experiment with the
following techniques to incorporate the constraints.

Lagrangian multipliers. Here we minimize

L :=
1

n

n∑

i=1

`BCE
θ (xi, yi) + λ>max{F(θ),0} ,

using stochastic gradient descent, i.e., alternating updates
θ ← θ − ηθ∇θL and λ ← max{λ + ηλ∇λL,0},
where ηθ, ηλ are the learning rates.

Projected gradient descent. For this method, consider specif-
ically the p%-rule based notion F(θ) = |Aθ| − c. We first
define Â as the matrix consisting of the rows of A for
which F(θ) > 0, i.e., where the constraint is active. In each
step, we project the computed gradient of the binary-cross-
entropy loss LBCE—either of a single example or averaged
over a minibatch—back into the constraint set, i.e.,

θ ← θ − ηθ(Idd − Â>(ÂÂ>)−1Â)∇θ`
BCE
θ . (10)

Interior point log barrier (Boyd & Vandenberghe, 2004).
We can approximate eq. (8) for the p%-rule con-
straint F(θ) = |Aθ|−c by: minimize

∑n
i=1 `

BCE
θ (xi, yi)−

1
t

∑p
j=1

(
log(a>j θ + cj) + log(−a>j θ + cj)

)
, where aj is

the jth row of A. The parameter t trades off the approx-
imation of the true objective (I−(u) = 0 for u ≤ 0 and
I−(u) =∞ for u > 0) and the smoothness of the objective
function. Throughout training t is increased, allowing the
solution to move closer to the boundary. As the gradient of
the objective has a simple closed form representation, we
can perform regular (stochastic) gradient descent.

After extensive experiments (see Section 5) we found the La-
grangian multipliers technique to work best, both in yielding
high accuracies, reliably staying within the constraints and
being robust to hyperparameter changes such as learning
rates or the batch size. For a proof of concept, in Section 5
we focus on the p%-rule, i.e., eq. (9). Note that the gradients
for eq. (2) and eq. (3) take a similarly simple form, i.e., bal-
ancing the true positive or true negative rates (corresponding
to equal opportunity or equal odds) is simple to implement

for the Lagrangian multiplier technique, but harder for pro-
jected gradient descent. However, these fairness notions
are more expensive as we have to compute Z>X for each
update step, instead of pre-computing it once at the begin-
ning of training, see Algorithm 1 in the appendix. We could
speed up the computation again by evaluating the constraint
only on the current minibatch for each update, in which case
we risk violating the fairness constraint.

MPC-friendliness. For eq. (9), we can compute the gra-
dient updates in all three methods with elementary linear
algebra operations (matrix multiplications) and a single eval-
uation of the logistic function. While MPC is well suited for
linear operations, most nonlinear functions are prohibitively
expensive to evaluate in an MPC framework. Hence we
tried two piecewise linear approximations for σ(x). The
first was recently suggested for machine learning in an
MPC context (Mohassel & Zhang, 2017) and is simply
constant 0 and 1 for x < −0.5 and x > 0.5 respectively,
and linear in between. The second uses the optimal first
order Chebychev polynomial on each interval [x, x + 1]
for x ∈ {−5,−4, . . . , 4}, and is constant 0 or 1 outside
of [−5, 5] (Faiedh et al., 2001). While it is more accurate,
we only report results for the simpler first approximation, as
it yielded equal or better results in all our experiments.

As the largest number that can be represented in fixed-point
format with m integer and m fractional bits is roughly 2m +
1, overflow becomes a common problem. Since we whiten
the features X column-wise, we need to be careful whenever
we add roughly 2m numbers or more, because we cannot
even represent numbers greater than 2m. In particular, the
minibatch size has to be smaller than this limit. For large n,
the multiplication Z>X in the fairness function F for the
p%-rule is particularly problematic.

Hence, we split both factors into blocks of size b × b
with b < 2m and normalize the result of each blocked
matrix multiplication by b before adding up the blocks. We
then multiply the sum by b/n > 2−m. As long as b, b/n
(and thus also n/b) can be represented with sufficient preci-
sion, which is the case in all our experiments, this procedure
avoids under- and overflow. Note that we require the sam-
ple size n to be a multiple of b. In practice, we have to
either discard or duplicate part of the data. Since the latter
may introduce bias, we recommend subsampling. Once we
have (an approximation of) A ∈ Rp×d, we resort to normal
matrix multiplication, as typically p, d . 100, see Table 1.

Division is prohibitively expensive in MPC. Hence, we
set the minibatch size to a power of two, which allows
us to use fast bit shifts for divisions when averaging over
minibatches. To exploit the same trick when averaging
over/across blocks in the blocked matrix multiplication, we
choose n as the largest possible power of two, see Table 1.

Blind Justice: Fairness with Encrypted Sensitive Attributes

Table 1. Dataset sizes and online timing results of MPC certifica-
tion and training over 10 epochs with batch size 64.

Adult Bank COMPAS German SQF

n training examples 214 215 212 29 216

d features 51 62 7 24 23
p sensitive attr. 1 1 7 1 1
certification 802 ms 827 ms 288 ms 250 ms 765 ms
training 43 min 51 min 7 min 1 min 111 min

Algorithm 1 in Section B in the appendix describes the
computations M and REG have to run for fair model training
using the Lagrangian multiplier technique and the p%-rule
from eq. (9). We implicitly assume all computations are
performed jointly on additively shared secrets.

5. Experiments
The root cause for most technical difficulties pointed out in
the previous section is the necessity to work with fixed-point
numbers and the high computational cost of MPC. Hence,
major concerns are loss of precision and infeasible running
times. In this section, we show how to overcome both
doubts and that fair training, certification and verification
are feasible for realistic datasets.

5.1. Experimental Setup and Datasets

We work with two separate code bases. Our Python code
does not implement MPC, to be able to flexibly switch
between floating and fixed-point numbers as well as exact
non-linear functions and their approximations. We use it
mostly for validation and empirical guidance in our design
choices. The full MPC protocol is implemented in C++
on top of the Obliv-C garbled circuits framework (Zahur
& Evans, 2015a) and the Absentminded Crypto Kit (lib).
This is done as described in Section 3 for the Lagrangian
multiplier technique (see Section A in the appendix for more
details). It accurately mirrors the computations performed
by the first implementation on encrypted data.2 Except for
the timing results in Table 1, all comparisons with floating-
point numbers or non-linearities were done with the versatile
Python implementation. Details about parameters and the
algorithm can be found in Section B in the appendix.

We consider 5 real world datasets, namely the adult (Adult),
German credit (German), and bank market (Bank) datasets
from the UCI machine learning repository (Lichman, 2013),
the stop, question and frisk 2012 dataset (SQF),3 and the
COMPAS dataset (Angwin et al., 2016) (COMPAS). For
practical purposes (see Section 4), we subsample 2i ex-
amples from each dataset with the largest possible i, see
Table 1. Moreover, we also run on synthetic data, generated

2Code is available at https://github.com/
nikikilbertus/blind-justice

3https://perma.cc/6CSM-N7AQ

as described by Zafar et al. (2017c, Section 4.1), as it allows
us to control the correlation between the sensitive attributes
and the class labels. It is thus well suited to observe how dif-
ferent optimization techniques handle the fairness-accuracy
trade off. For comparison we use the SLSQP approach
described in Section 4.1 as a baseline. We run all meth-
ods for a range of constraint values in [10−4, 100] and a
corresponding range for SLSQP.

In the plots in this section, discontinuations of lines indicate
failed experiments. The most common reasons are overflow
and underflow for fixed-point numbers, and instability due
to exploding gradients. Plots and analyses for the remaining
datasets can be found in Section C in the appendix.

5.2. Comparing Optimization Techniques

First we evaluate which of the three optimization techniques
works best in practice. Figure 2 shows the test set accuracy
over the constraint value. By design, the synthetic dataset
exhibits a clear trade-off between accuracy and fairness. The
Lagrange technique closely follows the (dotted) baseline
from (Zafar et al., 2017c), whereas iplb performs slightly
worse (and fails for small c). Even though the projected
gradient method formally satisfies the proxy constraint for
the p% rule, it does so by merely shrinking the parameter
vector θ, which is why it also fails for small c. We analyze
this behavior in more detail in Section C in the appendix.

The COMPAS dataset is the most challenging as it contains
7 sensitive attributes, one of which has only 10 positive
instances in the training set. Since we enforce the fairness
constraint individually for each sensitive attribute (we ran-
domly picked one for visualization), the classifier tends to
collapse to negative predictions. All three methods maintain
close to optimal accuracy in the unconstrained region, but
collapse more quickly than SLSQP. This example shows that
the p%-rule proxy itself needs careful interpretation when
applied to multiple sensitive attributes simultaneously and
that our SGD based approach seems particularly prone to
collapse in such a scenario. On the Bank dataset accuracy in-
creases for iplb and Lagrange when the constraint becomes
active as c decreases until they match the baseline. Deter-
mining the cause of this—perhaps unintuitive—behavior
requires further investigation. We currently suspect the con-
straint to act as a regularizer. The projected gradient method
is unreliable on the Bank dataset.

Empirically, the Lagrangian multiplier technique is most
robust with maximal deviations of accuracy from SLSQP
of < 4% across the 6 datasets and all constraint values. We
substantiate this claim in Section C of the appendix. For
the rest of this section we only report results for Lagrangian
multipliers. Figure 2 also shows that using a piecewise linear
approximation as described in Section 4 for the logistic
function does not spoil performance.

https://github.com/nikikilbertus/blind-justice
https://github.com/nikikilbertus/blind-justice
https://perma.cc/6CSM-N7AQ

Blind Justice: Fairness with Encrypted Sensitive Attributes

10−4 10−2 100

0.6

0.7

0.8

constraint c

ac
cu

ra
cy

Synthetic

10−4 10−2 100
0.55

0.6

0.65

0.7

constraint c

COMPAS

10−4 10−2 100

0.8

0.82

0.84

0.86

0.88

0.9

constraint c

Bank

Figure 2. Test set accuracy over the p% value for different optimization methods (blue: iplb, orange: projected, green: Lagrange) and
either no approximation (continuous) or a piecewise linear approximation (dashed) of the sigmoid using floating-point numbers. The gray
dotted line is the baseline (see Section 4.1) and the black dashed line is unconstrained logistic regression (from scikit-learn).

10−4 10−2 100

0.2

0.4

0.6

0.8

constraint c

fr
ac

tio
n

w
ith

ŷ
=

1 Synthetic

10−4 10−2 100

0

0.2

0.4

constraint c

COMPAS

10−4 10−2 100

0

0.2

0.4

0.6

constraint c

Bank

Figure 3. The fraction of people with z = 0 (continuous/dotted) and z = 1 (dashed/dash-dotted) who get assigned positive outcomes
(red: no approx. + float, purple: no approx. + fixed, yellow: pw linear + float, turquoise: pw linear + fixed, gray: baseline).

5.3. Fair Training, Certification and Verification

Figure 3 shows how the fractions of users with positive out-
comes in the two groups (z = 0 is continuous and z = 1 is
dashed) are gradually balanced as we decrease the fairness
constraint c. These plots can be interpreted as the degree
to which disparate impact is mitigated as the constraint is
tightened. The effect is most pronounced for the synthetic
dataset by construction. As discussed above, the collapse
for the COMPAS dataset occurs faster than for SLSQP due
to the constraints from multiple sensitive attributes. In the
Bank dataset, for large c—before the constraint becomes
active—the fractions of positive outcomes for z = 1 dif-
fer, which is related to the slightly suboptimal accuracy at
large c that needs further investigation. However, as the
constraint becomes active, the fractions are balanced at a
similar rate as the baseline. Overall, our Lagrangian mul-
tiplier technique with fixed point numbers and piecewise
linear approximations of non-linearities robustly manages
to satisfy the p%-rule proxy at similar rates as the baseline
with only minor losses in accuracy on all but the challenging
COMPAS dataset.

In Table 1 we show the online running times of 10 training
epochs on a laptop computer. While training takes several
orders of magnitudes longer than a non-MPC implementa-
tion, our approach still remains feasible and realistic. We
use the one time offline precomputation of multiplication
triples described and timed in Mohassel & Zhang (2017,
Table 2). As pointed out in Section 3, certification of a
trained model requires checking whether F(θ) > 0. We
already perform this check at least once for each gradient

update during training. It only takes a negligible fraction of
the computation time, see Table 1. Similarly, the operations
required for certification stay well below one second.

Discussion. In this section, we have demonstrated the prac-
ticability of private and fair model training, certification and
verification using MPC as described in Figure 1. Using the
methods and tricks introduced in Section 4, we can over-
come accuracy as well as over- and underflow concerns due
to fixed-point numbers. Offline precomputation combined
with a fast C++ implementation yield viable running times
for reasonably large datasets on a laptop computer.

6. Conclusion
Real world fair learning has suffered from a dilemma: in
order to enforce fairness, sensitive attributes must be exam-
ined; yet in many situations, users may feel uncomfortable
in revealing these attributes, or modelers may be legally
restricted in collecting and utilizing them. By introducing
recent methods from MPC, and extending them to handle
linear constraints as required for various notions of fair-
ness, we have demonstrated that it is practical on real-world
datasets to: (i) certify and sign a model as fair; (ii) learn a
fair model; and (iii) verify that a fair-certified model has in-
deed been used; all while maintaining cryptographic privacy
of all users’ sensitive attributes. Connecting concerns in pri-
vacy, algorithmic fairness and accountability, our proposal
empowers regulators to provide better oversight, modelers to
develop fair and private models, and users to retain control
over data they consider highly sensitive.

Blind Justice: Fairness with Encrypted Sensitive Attributes

Acknowledgments
The authors would like to thank Chris Russell and Phillipp
Schoppmann for useful discussions and help with the imple-
mentation, as well as the anonymous reviewers for helpful
comments. AG and MK were supported by The Alan Turing
Institute under the EPSRC grant EP/N510129/1. MV was
supported by EPSRC grant EP/M507970/1. AW acknowl-
edges support from the David MacKay Newton research
fellowship at Darwin College, The Alan Turing Institute
under EPSRC grant EP/N510129/1 & TU/B/000074, and
the Leverhulme Trust via the CFI.

References
Absentminded crypto kit. https://bitbucket.org/
jackdoerner/absentminded-crypto-kit.

Al-Rubaie, M., Wu, P. Y., Chang, J. M., and Kung, S.
Privacy-preserving PCA on horizontally-partitioned data.
In DSC, pp. 280–287. IEEE, 2017.

Angwin, J., Larson, J., Mattu, S., and Kirchner, L. Ma-
chine bias: There is software used across the country to
predict future criminals. and it is biased against blacks.
ProPublica, May, 23, 2016.

Barocas, S. and Selbst, A. D. Big data’s disparate impact.
California Law Review, 104:671–732, 2016.

Bennett Capers, I. Blind justice. Yale Journal of Law &
Humanities, 24:179, 2012.

Biddle, D. Adverse impact and test validation: A practi-
tioner’s guide to valid and defensible employment testing.
Gower Publishing, Ltd., 2006.

Boyd, S. and Vandenberghe, L. Convex optimization. Cam-
bridge university press, 2004.

Calders, T. and Žliobaitė, I. Why unbiased computational
processes can lead to discriminative decision procedures.
In Discrimination and Privacy in the Information Society,
pp. 43–59. Springer, 2012.

Damgård, I., Pastro, V., Smart, N. P., and Zakarias, S. Mul-
tiparty computation from somewhat homomorphic en-
cryption. In CRYPTO, volume 7417 of Lecture Notes in
Computer Science, pp. 643–662. Springer, 2012.

Demmler, D., Dessouky, G., Koushanfar, F., Sadeghi, A.,
Schneider, T., and Zeitouni, S. Automated synthesis
of optimized circuits for secure computation. In ACM
Conference on Computer and Communications Security,
pp. 1504–1517. ACM, 2015a.

Demmler, D., Schneider, T., and Zohner, M. ABY – a
framework for efficient mixed-protocol secure two-party
computation. In NDSS. The Internet Society, 2015b.

Dwork, C., Hardt, M., Pitassi, T., Reingold, O., and Zemel,
R. Fairness through awareness. In Proceedings of the 3rd
Innovations in Theoretical Computer Science Conference,
ITCS ’12, pp. 214–226. ACM, 2012.

Faiedh, H., Gafsi, Z., and Besbes, K. Digital hardware
implementation of sigmoid function and its derivative
for artificial neural networks. Proceeding of the 13th
International Conference on Microelectronics, 2001., pp.
189 – 192, 11 2001.

Feldman, M., Friedler, S., Moeller, J., Scheidegger, C., and
Venkatasubramanian, S. Certifying and removing dis-
parate impact. In Proceedings of the 21th ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, pp. 259–268, 2015.

Fredrikson, M., Jha, S., and Ristenpart, T. Model inver-
sion attacks that exploit confidence information and ba-
sic countermeasures. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications
Security, pp. 1322–1333, 2015.

Friedler, S. A., Scheidegger, C., and Venkatasubrama-
nian, S. On the (im)possibility of fairness. 2016.
arXiv:1609.07236v1 [cs.CY].

Gascón, A., Schoppmann, P., Balle, B., Raykova, M., Do-
erner, J., Zahur, S., and Evans, D. Privacy-Preserving
Distributed Linear Regression on High-Dimensional Data.
Proceedings on Privacy Enhancing Technologies, 2017
(4):345–364, October 2017.

Goldreich, O. The Foundations of Cryptography – Volume 2,
Basic Applications. Cambridge University Press, 2004.

Goldreich, O., Micali, S., and Wigderson, A. How to play
any mental game or A completeness theorem for proto-
cols with honest majority. In STOC, pp. 218–229. ACM,
1987.

Graham, C. NHS cyber attack: Everything you need to
know about ’biggest ransomware’ offensive in history.
Telegraph, May 20, 2017.

Grgić-Hlača, N., Zafar, M. B., Gummadi, K. P., and Weller,
A. Beyond distributive fairness in algorithmic decision
making: Feature selection for procedurally fair learning.
In AAAI, 2018.

Handel, P., Skog, I., Wahlstrom, J., Bonawiede, F., Welch,
R., Ohlsson, J., and Ohlsson, M. Insurance telematics:
Opportunities and challenges with the smartphone solu-
tion. IEEE Intelligent Transportation Systems Magazine,
6(4):57–70, 2014.

Hardt, M., Price, E., and Srebro, N. Equality of opportunity
in supervised learning. In NIPS, 2016.

https://bitbucket.org/jackdoerner/absentminded-crypto-kit
https://bitbucket.org/jackdoerner/absentminded-crypto-kit

Blind Justice: Fairness with Encrypted Sensitive Attributes

Juvekar, C., Vaikuntanathan, V., and Chandrakasan, A.
Gazelle: A Low Latency Framework for Secure Neu-
ral Network Inference. IACR Cryptology ePrint Archive,
2018:73, 2018.

Keller, M., Scholl, P., and Smart, N. P. An architecture for
practical actively secure MPC with dishonest majority.
In ACM Conference on Computer and Communications
Security, pp. 549–560. ACM, 2013.

Keller, M., Orsini, E., Rotaru, D., Scholl, P., Soria-Vazquez,
E., and Vivek, S. Faster secure multi-party computation
of AES and DES using lookup tables. In ACNS, volume
10355 of Lecture Notes in Computer Science, pp. 229–
249. Springer, 2017.

Keller, M., Pastro, V., and Rotaru, D. Overdrive: Mak-
ing SPDZ great again. In EUROCRYPT (3), volume
10822 of Lecture Notes in Computer Science, pp. 158–
189. Springer, 2018.

Kroll, J. A., Huey, J., Barocas, S., Felten, E. W., Reiden-
berg, J. R., Robinson, D. G., and Yu, H. Accountable
algorithms. University of Pennsylvania Law Review, 165,
2016.

Lichman, M. UCI machine learning repository, 2013. URL
http://archive.ics.uci.edu/ml.

Lindell, Y. How To Simulate It – A Tutorial on the Simula-
tion Proof Technique. IACR Cryptology ePrint Archive,
2016:46, 2016.

Liu, J., Juuti, M., Lu, Y., and Asokan, N. Oblivious neural
network predictions via minionn transformations. In CCS,
pp. 619–631. ACM, 2017.

Mohassel, P. and Zhang, Y. SecureML: A system for scal-
able privacy-preserving machine learning. In IEEE Sym-
posium on Security and Privacy (SP), pp. 19–38, 2017.

Nikolaenko, V., Ioannidis, S., Weinsberg, U., Joye, M., Taft,
N., and Boneh, D. Privacy-preserving matrix factoriza-
tion. In ACM Conference on Computer and Communica-
tions Security, pp. 801–812. ACM, 2013a.

Nikolaenko, V., Weinsberg, U., Ioannidis, S., Joye, M.,
Boneh, D., and Taft, N. Privacy-preserving ridge re-
gression on hundreds of millions of records. In IEEE
Symposium on Security and Privacy, pp. 334–348. IEEE
Computer Society, 2013b.

Schreurs, W., Hildebrandt, M., Kindt, E., and Vanfleteren,
M. Cogitas, Ergo Sum. The Role of Data Protection Law
and Non-discrimination Law in Group Profiling in the
Private Sector. In Profiling the European Citizen, pp.
241–270. Springer, 2008.

Tramèr, F., Zhang, F., Juels, A., Reiter, M. K., and Risten-
part, T. Stealing machine learning models via prediction
apis. In USENIX Security Symposium, pp. 601–618, 2016.

Veale, M. and Binns, R. Fairer machine learning in the
real world: Mitigating discrimination without collecting
sensitive data. Big Data & Society, 4(2), 2017.

Veale, M. and Edwards, L. Clarity, Surprises, and Further
Questions in the Article 29 Working Party Draft Guidance
on Automated Decision-Making and Profiling. Computer
Law & Security Review, 2018. doi: 10.1016/j.clsr.2017.
12.002.

Yao, A. C.-C. How to Generate and Exchange Secrets (Ex-
tended Abstract). In FOCS, pp. 162–167. IEEE Computer
Society, 1986.

Zafar, M. B., Valera, I., Gomez-Rodriguez, M., and Gum-
madi, K. P. Fairness beyond disparate treatment & dis-
parate impact: Learning classification without disparate
mistreatment. In WWW, 2017a.

Zafar, M. B., Valera, I., Rodriguez, M., Gummadi, K., and
Weller, A. From parity to preference-based notions of fair-
ness in classification. In Advances in Neural Information
Processing Systems, pp. 228–238, 2017b.

Zafar, M. B., Valera, I., Rodriguez, M. G., and Gummadi,
K. P. Fairness Constraints: Mechanisms for Fair Classifi-
cation. In AISTATS, 2017c.

Zahur, S. and Evans, D. Obliv-c: A language for extensible
data-oblivious computation. IACR Cryptology ePrint
Archive, 2015:1153, 2015a.

Zahur, S. and Evans, D. Obliv-C: A Language for Extensible
Data-Oblivious Computation. IACR Cryptology ePrint
Archive, 2015:1153, 2015b.

Žliobaitė, I. and Custers, B. Using sensitive personal data
may be necessary for avoiding discrimination in data-
driven decision models. Artificial Intelligence and Law,
24(2):183–201, 2016.

http://archive.ics.uci.edu/ml

Blind Justice: Fairness with Encrypted Sensitive Attributes

A. Details of the MPC Protocols
Secret sharing. A secret sharing scheme allows one to
split a value x (the secret) among two parties, so that no
party has unilateral access to x. In our setting, a user Alice
will secret share a sensitive value, for example her race,
among a modeler M and a regulator REG. Several secret
sharing schemes exist, including Shamir secret sharing, xor
sharing, Yao sharing, or arithmetic multiplicative/additive
sharing. In this work we alternate between Yao sharing and
additive sharing for efficiency. In the latter, the value x is
represented in a finite domain Zq with, for example q = 232.
To share her race, Alice samples a value r from Zq uniformly
at random, and sends x−r to M and r to REG. We call each
of x − r and r a share, and denote them as 〈x〉1 and 〈x〉2.
Now M and REG can recover x by adding their shares, but
each share on its own does not reveal anything about the
value of x (other than that it is smaller than q). Note that the
case where q = 2 corresponds to xor sharing.

Function evaluation. MPC can be classified in two
groups depending on how f is represented: either as a
Boolean or arithmetic circuit. All protocols proceed by
having the parties jointly evaluate the circuit, processing it
gate by gate. For each gate g for which the value for the
input wires x, y is shared among the parties, the parties run
a subprotocol to produce the value z = g(x, y) of the output
wire, again shared, without revealing any information in
the process. In the setting where we use arithmetic additive
sharing, the two parties M and REG hold shares, 〈x〉1,〈y〉1
and 〈x〉2,〈y〉2, respectively. In this case, f is represented as
an arithmetic circuit, and hence each gate g in the circuit is
either an addition or a multiplication. Note that if g is an
addition gate, then a sharing of z = g(x, y) can be obtained
by having each party simply compute locally, i.e., without
any interaction, 〈z〉i = 〈x〉i + 〈y〉i, for i ∈ {1, 2}. If g is
a multiplication, the subprotocol to compute shares of z is
much more costly. Fortunately, it can be divided into an
offline and an online phase.

The preprocessing model in MPC. In this model, two
parties P1, P2 engage in an offline phase, which is data
independent, and compute (and store) shared multiplication
triples of the form (a, b, c), with c = ab. Here, a, b ∈ Fq are
drawn uniformly at random, and each value a, b, c is shared
among the parties as explained above. In the online phase, a
multiplication gate z = mul(x, y) on shared values x, y can
be evaluated as follows: (1) each Pi sets 〈e〉i = 〈x〉i − 〈a〉i
and 〈f〉i = 〈y〉i−〈b〉i, (2) the parties exchange their shares
of e and f and reconstruct these values locally, and (3)
each Pi computes 〈z〉i = (i − 1)ef + f〈a〉i + e〈b〉i +
〈c〉i. The correctness of this protocol can be easily checked.
Privacy relies on the uniform randomness of a, b, and hence
〈e〉i and 〈f〉i completely mask the values of 〈x〉i and 〈y〉i,

respectively. For a formal proof see (Demmler et al., 2015b).

Hence, for each multiplication in the function to be eval-
uated, the parties need to jointly generate a multiplication
triple in advance. For computations with many multiplica-
tions (like in our case) this can be a costly process. However,
this constraint is easy to accommodate in our architecture
for private fair model training, as M and REG can run the of-
fline phase once “overnight”. Arithmetic multiplication via
precomputed triples is a common technique, used in several
popular MPC frameworks (Demmler et al., 2015b; Damgård
et al., 2012). In this setting, several protocols for triple gen-
eration (which we did not describe) are available (Keller
et al., 2018), and under continuous improvement. These
protocols are often based on either Oblivious Transfer or
Homomorphic Encryption.

The two-server model for multi-party learning. Due to
a sequence of theoretical and engineering breakthroughs, in
the last three decades MPC has gone from being a mathe-
matical curiosity to a technology of practical interest with
commercial applications. Several generic protocols for
MPC exists, such as the ones based on arithmetic shar-
ing (Damgård et al., 2012), garbled circuits (Yao, 1986), or
GMW (Goldreich et al., 1987), with several available imple-
mentations (Demmler et al., 2015b; Zahur & Evans, 2015b).
These protocols have different trade-offs in terms of the
number of parties they support, network requirements, and
scalability for different kinds of computations. In our work,
we focus on the 2-party case, as the MPC computation is
done by M and REG. The idea of privately outsourcing com-
putation to two non-colluding parties in this way is recurrent
in MPC, and often referred to as the two-server model (Mo-
hassel & Zhang, 2017; Gascón et al., 2017; Nikolaenko
et al., 2013b; Al-Rubaie et al., 2017).

While generic protocols exist, these do not yet scale to input
sizes typically encountered in machine learning applica-
tions like ours. To circumvent this limitation, techniques
tailored to specific applications have been proposed. Our
protocols fall in this category, extending the SGD protocol
from (Mohassel & Zhang, 2017), in which the following
useful accelerating techniques are presented.

• Efficient rescaling: As our arithmetic shares repre-
sent fixed-point numbers, we need to rescale by the
precision p after every multiplication. This involves
dividing by 2p, an expensive operation to do in MPC,
and in particular in arithmetic sharing. Mohassel et al.
show an elegant solution to this problem: the parties
can rescale locally by dropping p bits of their shares.
It is not hard to see that this might produce the wrong
result. However, the parameters of the arithmetic secret
sharing scheme can be set such that with a tunable ar-
bitrarily large probability the error is at most ±1. This

Blind Justice: Fairness with Encrypted Sensitive Attributes

trick can be used for any division by a power of two.

• Alternating sharing types: As already pointed out in
previous work (Demmler et al., 2015b), alternating be-
tween secret sharing schemes can provide significant
acceleration for some applications. Intuitively, arith-
metic operations are fast in arithmetic shares, while
comparisons are fast in schemes that represent func-
tions as Boolean circuits. Examples of the latter are
the GMW protocol and Yao’s garbled circuits. In our
implementation, we follow this recipe and implement
matrix-vector multiplication using arithmetic sharing,
while for evaluating our variant of sigmoid, we rely on
the protocol from (Mohassel & Zhang, 2017) imple-
mented with garbled circuits using the Obliv-C frame-
work (Zahur & Evans, 2015b).

• Matrix multiplication triples: Another observation
made by Mohassel et al. is that the idea described
above for preprocessing multiplications over arithmetic
shares can be reinterpreted at the level of matrices. This
results in a faster online and offline phase (see (Mohas-
sel & Zhang, 2017) for details).

How to prove that a protocol is secure. We did not pro-
vide a formal definition of security in this paper, and instead
referred the reader to (Mohassel & Zhang, 2017). In MPC,
privacy in the case of semi-honest adversaries is argued
in the simulation paradigm (see (Goldreich, 2004) or (Lin-
dell, 2016) for formal definitions and detailed proofs). Intu-
itively, in this paradigm one proves that every inference that
a party—in our case either REG or M—could draw from
observing the execution trace of the protocol could also be
drawn from the output of the execution and the party’s input.
This is done by proving the existence of a simulator that can
produce an execution trace that is indistinguishable from
the actual execution trace of the protocol. A crucial point is
that the simulator only has access to the input and output of
the party being simulated.

B. Details of Fair Model Training
B.1. The Fair Training Algorithm

Algorithm 1 describes the computations M and REG have
to perform for fair model training using the Lagrangian mul-
tiplier technique and the p%-rule from eq. (9). In the next
subsection we describe the parameter values. We implicitly
assume all computations are performed jointly on additively
shared secrets by M and REG as described in Section 3.
This means that M and REG each receive a secret share of
the protected attributes Z. Following the protocols outlined
in Section 3, they can then jointly evaluate the steps in Algo-
rithm 1. This allows them to operate on the sensitive values
within the MPC computation, while preventing unilateral

access to them by M and REG. The result of these computa-
tions is the same as evaluating the algorithm as described
with data in the clear.

BLOCKEDMULTSHIFTAVG stands for the blocked matrix
multiplication to avoid overflow for fixed-point numbers
described towards the end of Section 4. Note that it already
contains the division by n. The averaging within the blocked
matrix multiplications as well as over the results thereof are
done by fast bit shifts instead of slow MPC division circuits.
This is possible, because we chose all parameters such that
divisions are always by powers of two.

We found the piecewise linear approximation of the sigmoid
function introduced in (Mohassel & Zhang, 2017)

SIGMOIDAPPROX(x) :=

0 if x ≤ − 1
2 ,

x+ 1
2 if − 1

2 < x < 1
2 ,

1 if x ≥ 1
2 .

to work best, see Figure 4.

Algorithm 1 Fair model training with private sensitive val-
ues using Lagrangian multipliers for F(θ) = 1/n|Z>X|− c.
Parties: M, REG.
Input: (M) 〈Z〉1 ∈ Zn×p

q

Input: (REG) X ∈ Zn×d
q , y ∈ Zn

q , 〈Z〉2 ∈ Zn×p
q

Input: (Public) Learning rates ηθ, ηλ, number of training
examples n, minibatch size 2s, constraints c ∈ Zp

q , number
of epochs Ne.

1: θ ← 0, λ← 0
2: A← BLOCKEDMULTSHIFTAVG(Z>,X)
3: for all j from 1 to Ne do
4: for all i from 1 to n/2s do
5: (Xi,yi)← SAMPLEMINIBATCH(X,y)
6: F← |Aθ| − c
7: ∇λ ← max{F,0}
8: σ ← SIGMOIDAPPROX(Xiθ)
9: ∇BCE

θ ← SHIFTDIVIDE(X>i (σ − yi), 2
s)

10: ∇CON
θ ←

A>λ, if A > 0 ∧ F > 0

−A>λ, if A < 0 ∧ F > 0

0, if F ≤ 0

11: θ ← θ − ηθ(ξBCE
j ∇BCE

θ + ξCON
j ∇CON

θ)
12: λ← max{λ + ηλ∇λ,0}
13: end for
14: end for
Output: Parameters θ

B.2. Description of Training Parameters

All our experiments use a batch size of 64, a fixed number
of epochs scaling inversely with dataset size n (such that
we always perform roughly 15 000 gradient updates), fixed
learning rates of ηθ = 10−4, ηλ = 0.05, and an annealing

Blind Justice: Fairness with Encrypted Sensitive Attributes

−6 −4 −2 2 4 6

0.5

1

Figure 4. Piecewise linear approximations for the non-linear sig-
moid function (in black) from Mohassel & Zhang (2017) in blue
and from Faiedh et al. (2001) in orange.

schedule for 1/t in the interior point logarithmic barrier
method as described by Boyd & Vandenberghe (2004). The
weights for the gradients of the regular binary cross entropy
loss (BCE) and the loss from the constraint terms (CON)
follow the schedules

ξBCE
j =

Ne

Ne + j
, ξCON

j =
Ne + 10j

Ne
.

Weight decay, adaptive learning rate schedules. and momen-
tum neither consistently improved nor impaired training.
Therefore, all reported numbers were achieved with vanilla
SGD, for fixed learning rates, and without any regulariza-
tion. After extensive testing on all datasets, we converged
to a fixed-point representation with 16 bits for the integer
and fractional part respectively. The smaller the number
of bits, the faster the MPC implementation and the higher
the risk of loss of precision or over- and underflows. We
found 16 bits to be the minimally needed precision for all
our experiments to work.

C. Additional Experimental Results
C.1. Results on Remaining Datasets

Analogously to Figures 2 and Figure 3 we report the results
on test accuracy as well as the mitigation of disparate impact
for the Lagrangian multiplier method in Figure 5. In the
Adult dataset we are able to mitigate disparate impact with
slightly worse accuracy as compared to the baseline. Note
that the German dataset contains only 512 training and 200
test examples, which explains the discrete jumps in accuracy
in minimal steps of 1/200 = 0.005. Hence, even though the
Lagrangian multiplier technique here consistently removes
disparate impact to a similar extent as the baseline, interpre-
tations of results on such small datasets require great care.
For the much larger stop, question and frisk dataset we again
observe the curious initial increase in accuracy similar to
our observations for the Bank dataset. In this dataset about
93% of all samples have positive labels, which explains the
near optimal accuracy when collapsing to always predict 1,

which happens for the baseline as well for our method at a
similar rate as c decreases.

C.2. Disadvantages of Other Optimization Methods

In Section 5 we suggest the Lagrangian multiplier technique
for fair model training using fixed-point numbers. Here we
substantiate this suggestion with further empirical evidence.
Figure 6 shows analogous results to Figure 3 and the second
row of Figure 5. These plots reveal the shortcomings of the
interior point logarithmic barrier and the projected gradient
methods.

Interior Point Logarithmic Barrier method. While the
interior point logarithmic barrier method does balance the
fractions of people being assigned positive outcomes be-
tween the two different demographic groups when the con-
straint is tightened, it soon breaks down entirely due to
overflow and underflow errors. The number of failed runs
was substantially higher than for the Lagrangian multiplier
technique. As explained in (Boyd & Vandenberghe, 2004),
when we increase the parameter t of the interior point loga-
rithmic barrier method during training, the barrier becomes
steeper, approaching the function

I−(x) =

{
0 for x ≤ 0 ,

∞ for x > 0 .

From this it becomes obvious that when facing tight con-
straints, the gradients might change from almost zero to
extremely large values within a single update of the pa-
rameters θ. Moreover, iplb requires careful tuning and
scheduling of t. Hence, the interior point logarithmic barrier
method, while achieving good results over some domains,
is not well suited for MPC.

Projected gradient method. In Figure 6, we observe that
the projected gradient method seems to fail in most cases,
since it does not actually balance the fractions of positive
outcomes across the sensitive groups. There is a simple
explanation why it can satisfy the constraint F(θ) ≤ 0 for
the p%-rule even with small c and still retain near optimal
accuracy. Note that the accuracy only depends on the direc-
tion of θ, i.e., it is invariant to arbitrary rescaling of θ. Since
the constraint F(θ) = |Aθ| − c ≤ 0 is always satisfied for
θ = 0, dividing any θ by a large enough factor will result
in a classifier that achieves equal accuracy and satisfies the
constraint (by continuity). However, minimizing the loss
in the original logistic regression optimization problem (or
equivalently maximizing the likelihood), which is not in-
variant under rescaling of θ, counteracts shrinking θ as it
enforces high confidence of decisions, i.e., large θ. The
projection method produces high accuracy classifiers with
small weights that formally fulfill the fairness constraint,
but do not properly mitigate disparate impact as measured

Blind Justice: Fairness with Encrypted Sensitive Attributes

0.8

0.82

0.84

ac
cu

ra
cy

Adult

0.68

0.7

0.72

0.74

0.76

German

0.93

0.94

0.95

0.96

SQF

10−4 10−2 100

0.1

0.2

0.3

0.4

0.5

constraint c

%
w

ith
ŷ

=
1

10−4 10−2 100

0.7

0.8

0.9

constraint c
10−4 10−2 100

0.85

0.9

0.95

1

constraint c

Figure 5. First row: The color code is blue: iplb, orange: projected, green: Lagrange with continuous lines for no approximation and
dashed lines for piecewise linear approximation. The gray dotted line is the baseline and the dashed black line marks unconstrained
logistic regression. Second row: Continuous/dotted lines correspond to z = 0 and dashed/dash-dotted lines to z = 1. The color code is
(red: no approx. + float, purple: no approx. + fixed, yellow: pw linear + float, turquoise: pw linear + fixed, gray: baseline).

ip
lb

Synthetic COMPAS Bank Adult German SQF

10−3 10−1

constraint c

pr
oj

ec
te

d

10−3 10−1

constraint c
10−3 10−1

constraint c
10−3 10−1

constraint c
10−3 10−1

constraint c
10−3 10−1

constraint c

Figure 6. We plot the fraction of people with z = 0 (continuous/dotted) and with z = 1 (dashed/dash-dotted) who get assigned positive
outcomes over the constraint c for 5 different datasets. The different colors correspond to (red: no approximation + floats, purple: no
approximation + fixed-point, yellow: piecewise linear + floats, turquoise: piecewise linear + fixed-point, gray: baseline).

Blind Justice: Fairness with Encrypted Sensitive Attributes

by the true p%-rule instead of the computational proxy. It
also often fails for small constraint values, as the projec-
tion matrix in eq. (10) turns out to become near singular
producing over- and underflow errors.

D. Clarification of Privacy or Secrecy
In this work, privacy or secrecy constraints are separate
from other theorized, setup-dependent attacks, e.g., model
extraction (Tramèr et al., 2016) or inversion (Fredrikson
et al., 2015). If relevant, modelers may need to consider
these separately.

